Thermo-hydro-mechanical
behavior
of single energy piles

Prof. Lyesse Lalouli




Outline

Thermo-mechanical testing

Axial capacity and deformation

Thermo-mechanical schemes

Thermo-Plile

Thermo-mechanical behaviour of single energy piles Lyesse Laloui



Thermo-mechanical testing
of single energy piles

Sign convention:

« Compressive stresses and contractive strains considered positive
« Downward displacements (i.e., settlements) considered positive
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Observed response of a single energy pile

= y Location

of the pile
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Full-scale in situ
testing of a single

| energy pile

Under a 4-storey building

at EPFL campus (Batiment
Polyvalent)

Polyethylene U-tube attached

' on the reinforcing cage
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Features of the test
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Goal of the field test

» Analyse the thermo-mechanical behaviour of a single energy pile
subjected to heating loads

(Laloui et al., 2003)
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End-bearing energy pile
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Thermo-mechanical behaviour of single energy piles Lyesse Laloui



Temperature and vertical strain variation — Test 1
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Vertical strain reversibility — Test 1
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Vertical head displacement history
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Vertical head displacement
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Vertical displacement variations

Null point of vertical displacement
It represents the plane where no thermally induced displacement occur in the pile
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(Laloui et al., 2003)
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Mobilised shaft resistance (mechanical loading)

Mobilised shaft resistance, t [kPa]
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Observed thermally induced shaft resistance variations

(Laloui and Rotta Loria, 2019)
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Mobilised shaft resistance (thermo-mechanical loading)

Mobilised shaft resistance, t [kPa]
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Linear decrease of 2.1 kPa/°C for shaft resistance above null point
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Vertical stress variation and degree of freedom

., 2003)

150 kPa/°C at the pile head (Laloui et al
—~ Mechanically induced portion
—@- Thermally induced portion
—@- Total
0 1 ) L 1 T T T T |
e | I 0 I I | I
- » e o 1 - " .k > -
/ s \ NN
S g o ° . S B A0+ ~
L |‘ N N h N - = f /] / .
— N N /o
E 10 B | N N N . E 10 [ | /] / -
ed N
= o - — R A -
N 15 / /’ / N ~@ Test 1 <-,f f‘-f’- °
= )/ ;) < 15 ~+ Test2| [ 7
% -/ / ) / ] 8 ~& Test3 | |, | ) ]
0 20~/ I, - O 20 —A Test4 | |, | .
L ” - "W Test5 |4t @ . i
/ RN
©® Test6 S
L | — = —
25 s 25 L Test7
30 1 l 1 | 1 | 1 30 | I A A | I |
0 1000 2000 3000 4000 0.2 0.4 0.6 0.8 1

Vertical stress variation, Ao, [kPa]

Thermo-mechanical behaviour of single energy piles

Lyesse Laloui

Degree of freedom, DOF [-]



Observed thermally induced vertical stress variations

(Laloui and Rotta Loria, 2019)
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Application of principle of superposition

= l Pile AT >0 Pile P l AT>0  Ppile
P S P - P
’
| |
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Axlal capacity and
deformation
of single energy piles
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Modelling approaches

Numerical methods (FE, DE)
Load-transfer methods (t-z)
Analytical solutions (closed-form expressions)

Temp. variation [°C]
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The problem

Q,

(Laloui and Rotta Loria, 2019)
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General methods of pile installation

« Pile driving: Installation of piles by driving them into the ground (i.e.,
displacement piles)

* During installation, the soil is displaced mainly radially, so

* Non-cohesive (e.g., coarse-grained) soils are compacted
« Cohesive (e.qg., fine-grained) soils tend to suffer heave

 Pile boring: Installation of piles by excavating the ground and filling
with concrete (i.e., non-displacement piles)

« During installation lateral stresses in the ground are reduced, so

* Fine-grained soils tend to suffer swelling and softening, and
the initial condition are only partly restored upon concreting

Thermo-mechanical behaviour of single energy piles Lyesse Laloui
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Generalised formulation of bearing capacity

« The net ultimate load capacity, Q,, of a single pile is
equal to the sum of the shaft capacity, Q,, and base
capacity, Q,, less than the weight of the pile, W'

| Qu=0s+Q,-W |

 In the design practice, the shaft and base capacities
are computed independently from each other, even if
they are not necessarily mobilised at the same time:

* Pile shaft: 0.5 to 2% of the pile diameter, i.e.,
displacements usually in the range of 5 to 15 mm

* Pile base: 5 to 10% of the pile base diameter

Thermo-mechanical behaviour of single energy piles Lyesse Laloui
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Types of piles

« End-bearing piles: piles that penetrate a relatively soft layer of soll
to found on a firmer stratum and derive most of their capacity from
the base capacity, Q,

* Floating piles: piles that do not found on a particularly firm stratum
and derive most of their capacity from the shaft capacity, Q.

 In cohesive soll, the shaft capacity of piles is generally paramount

 In non-cohesive soil the overall capacity is more evenly divided
between shaft and base
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Methods to estimate the bearing capacity

« Two main different ways to estimate the axial capacity of piles:

« Experimental estimation, e.g., use of load-settlement curves
« Analytical estimation, e.g., use of bearing capacity theory

« The bearing capacity of a pile is considered as:

* |oad for which a further increase in settlement does not induce
an increase in load
 load causing a settlement of 10% of the pile base diameter, D

Thermo-mechanical behaviour of single energy piles Lyesse Laloui 24



Experimental estimation of bearing capacity

(Rotta Loria et al., 2016)
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Analytical estimation of bearing capacity

The shaft capacity can be estimated by integrating along the pile
shaft the pile-solil interface shear strength

The base capacity can be evaluated from bearing capacity theory

Qu = QA5 + qpAp — W

_ 1
= (¢, + o,Ktan§)A, + (cNC + opp Ny + —yDNy) Ay, —W

2

qs. average shear strength down the
pile shaft

A, = 2nRL: external surface of the pile
shaft (R = pile radius; L = pile length)
qp: base resistance

A, = mR? pile cross-sectional area

C,. average pile-soil interface
adhesion

d,. Some average vertical stress

Thermo-mechanical behaviour of single energy piles

K: some average coefficient of lateral
pressure

§: some angle of pile-soil interface
shear strength

c: soil cohesion

N¢, N, and N, bearing capacity
factors

o,p. SOme vertical stress at pile base
y: some unit weight of the soil
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Effective stress analysis

« When drained conditions may be assumed upon loading an
effective stress analysis approach can be considered

« Assuming equal to zero the cohesive components and neglecting
the term %y’DNy because small in relation to the term involving N,

the generalised formulation of the ultimate load capacity becomes

Qu = qsAs + qpAp —W = ' ,Ktan§ A; + o' ,, Ny A — W
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Effective stress analysis - shaft capacity

The shaft resistance is often expressed as ¢’ ,Ktané = o',f3
B = K tan § must be defined considering K and tan §

K relates the normal stress acting on the pile-soil interface after pile

installation, ¢',, to the in situ vertical effective stress, ¢’,,
For displacement piles: K = Ky = 1 —sin @, , 6 = @,
For non-displacement piles: K = 0.7K, = 0.7(1 — sin ¢,), § = @,

The approach of considering 6’ = ¢, may be justified on the basis
that no dilation is expected between the soil and the shaft at failure

Thermo-mechanical behaviour of single energy piles Lyesse Laloui
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Effective stress analysis — base capacity

» Instead of the simple product o', N, the base resistance is often
expressed as

_ I/

« According to Hansen (1970):

Ngsqdg = K, *e”tarl 9" d, s,
= (Ky,e™®" % )(1 4 2tan ¢* (1 — sinp*)2k)(1 + 0.1K,)

1+ sing” ‘ L
= (1 — z* et tan ¢ ) (1 + 2tan @* (1 — sin@*)?tan! (E)) (1
+ 0.1K))

- In the previous formula, it is often considered s, = 1 and ¢°
represents an appropriate value of angle of shear strength
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Analysis of piles in rock

* When dealing with piles founded on rock, only the base capacity
can be considered to contribute to the total pile capacity, hence

QuEQb

« According to Zhang and Einstein (1998):

UCS

Qp = qpAp = 15p, Ap

Vpa

* UCS = unconfined compressive strength
* p, = atmospheric pressure
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Thermo-mechanical
schemes for energy piles

Fundamental hypothesis:

« Thermo-elastic behaviour of the energy pile-soil system

Thermo-mechanical behaviour of single energy piles Lyesse Laloui
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Mathematical formulation for axial equilibrium

DZ

4

T
P+—Kyw(z=0)+W + Qs mop + Cvmor =0

P: applied load
K;: head stiffness

wy, . vertical head displacement

* Qs mop: Mobilised shaft capacity

* Qpmop: Mobilised base capacity

Thermo-mechanical behaviour of single energy piles

lP+nmmmm
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Mathematical formulation for axial equilibrium

* Both Qs 0p and Qp mop Can be written in terms of a mechanical and

a thermal portion as

‘ QS mob — Qs mob + Qs mob ‘

‘ Qb,mob

Qb mob + Qb mob ‘

 where

th

s,;mob — Qs,mob,up + Qs,mob,down ‘

ZNP,t

Qs,mob,up = nD f

0

Tdz

L
Qs,mob,down — T[Df

ZNp

Tdz

, T

Thermo-mechanical behaviour of single energy piles

(Mimouni and Laloui, 2014)

Zyp .. depth of null
point of shear stress
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Energy pile with no head and base restraint

‘P+Q§mobzo‘

Mechanical loading
(no head and base restraint)

'

th
s,mob

— Qs,mob,up
+ Qs,mob,down =0

P+ Qs,mob
=P+ lemob
+ Q_g,}?lnob =0

(Rotta Loria et al., 2019)
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l
|
|
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Energy pile with head or base restraint

| P+Qsmob+Qbmob_O |

Mechanical loading

(base restraint K)

o, T w
2
P+nmn—K,w™m(z =0)
m 4 [ ] 2 -
+ Qs,mob =0
Heating
Q Q a, T w
s,mob b,mob —
DZ th . .': ™ i pointof"‘.
w— KhW (Z = O) : shear stress | Null point of
4‘ ‘ [:vertical displ.
+ =0 \ :
QS mob I Z Stronger
heating
Mechanical loading and heating
| P+ Qs,mob + Qb,mob =0 | 'l' v i

DZ
P+ T[TKhW(Z =0)
+ Qs,mob =0

z
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(Rotta Loria et al., 2019)
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Energy pile with head and base restraint

Mechanical loading
(head restraint equal to base restraint, i.e., K = K))

3

g, T w
D? "
P+ T[TKhW (z=0)
m m —
+ Qs,mob + Qb,mob =0
z
Heating
a, T w
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4 h h h "‘St
t t _ . Stronger
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¢ T w
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z
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Mechanical loading

(Rotta Loria et al., 2019)

(head restraint equal to double of base restraint, i.e., K, = 2K))

Heating

w

" Stronger
heating

Mechanical loading and heating

Null point of
P shear stress

Null point of
' vertical displ.

il
|

z
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Thermally induced strain

 If a pile can deform freely, a temperature change results in a
thermal deformation proportional to the coefficient of thermal
expansion, a, and the temperature change AT

th
gf = _aEpAT
a2l [] 1 g" R . £
AL/2
A
v
L L L L
F 3
v
N . AL2 ]
AL/2 2 z

(a) (b)
(Laloui et al., 2003;
Rotta Loria, 2018)
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Variation of body dimension

« This thermally induced strain leads to a change in length of

AL =L'"—L = —Lef" = LagpAT

av2l 1] ] gl

ael 7 1

(a)

Thermo-mechanical behaviour of single energy piles

...... Ef
AL/2
v
L L
' N
______ AL/2
Zz
(b)
(Laloui et al., 2003;
Rotta Loria, 2018)
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Thermally induced stress

* When the thermally induced deformation is completely blocked

Elt;h == _Efth = (XEPAT

« Therefore, a thermally induced stress arises

th _ th _
op = Eppey = EppagpAT

(a) (b)
(Laloui et al., 2003;
Rotta Loria, 2018)
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Summary

* Energy piles will generally be subjected to an observed thermal
strain when subjected to temperature changes of

gth < efh

« Hence, a portion of strain will be blocked
th th th

gb —_ 80 - gf
and pile behaviour will be characterised by a degree of freedom:
gth

DOF = — with 0 <DOF <1

i
* The blocked thermal strain will induce a thermal stress in the pile:

O'Oth = EEP‘glgh — EEP(Egh — gfth) = EEp(ggh + aEpAT)
—_ EEPaEPAT(l - DOF) (Laloui et al., 2003)
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Summary

@ Free thermal @ Fully blocked thermal
exp. conditions exp. conditions

ef" = —appAT et = —&f" = agpAT

@ Partially blocked @ Partially blocked
th. exp. conditions th. exp. conditions

55" = Egpép* = Egp(&)" — th)
= EEP(SO + aEpAT)

Thermo-mechanical behaviour of single energy piles

Normalised vertical strain, €, /e [-]

o

Lyesse Laloui

—

Normalised vertical stress, o /o, [-]

o

(Rotta Loria, 2018)
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Thermo-Plile

Fundamental hypothesis:

« Thermo-elastic behaviour of the energy pile-soil system

Thermo-mechanical behaviour of single energy piles Lyesse Laloui
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Load-transfer analysis approach recraun afer Knellwo et o, 2013

[P
* Pile-soll interaction modelled T 1 T z
through a load-transfer approach M % R t
t-Z I R) Z, =4
h, % R
L 3
oE
* The pile displacement =
. . |
calculation is based on a one h "'%1 Tz, W,
dimensional finite difference “ > F-Er
scheme % R “
R
t, &
 Standard calculation of pile
bearing capacity

W
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Load-transfer analysis approach recraun afer Knellwo et o, 2013

|p
- First introduced by Coyle and ul 13 :Er 2
Reese (1966) N Tt
S
 Pile discretised into k elements - _g B
of length h;
gtn i T
: ] k-1 T ’Ws
« Springs between two adjacent m[: z 5
elements represent pile rigidity K F==v,

* Interaction between soil and
pile along the lateral surface
and at tip is described by load
transfer curves
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(Laloui and Rotta Loria, 2019;

B aC kg rO U n d redrawn after Knellwolf et al., 2011)

Load-transfer relationship for shaft of single isolated pile
tS

Pile rigidity

Shaft rigidity K,/

q,/2+

LA

Load-transfer relationship for base of single isolated pile

tb

QL%AwWWLMW—‘

-~
1
—

K,/5

=~ MWW
ELCNE

q,/2+

W
/2 @

Base rigidity .%
R

Shaft and base resistance load-

* Finite difference scheme for .
settlement evaluation based on transfer (t-z) diagrams based
the work of Coyle and Reese on those proposed by Frank

(1963) and Zhao (1982)
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Extension (knelhwolt ot al, 2011)

Head rigidity
Load-transfer relationship for shaft of single isolated pile

1 t
Pile rigidity % N
% "E Shaft rigidity
z 5
3
E G
—=
k-1
= %s
k
Base rigidity %
S
» Head stiffness of the building « Shaft resistance t-z diagram

extended to consider thermlly
Induced displacements
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Thermo-Pile

A suitable tool to perform
the geotechnical and structural design of energy piles

P\

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

| ‘.
gLt g
=y

:: L nnmulllllllll IlIIII :

ThermoglE .1 [

B® ThermoPile
ThermoPile Project Model Graphs d )
1 _1_ ZI - -
Project
h, és "‘E Example_EPFL | i -

= Characteristic values
|:2 1 2z

Pile head 2200
Pile Base 511

Maxima 223
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m Qtot 7882 [kN)
hyy =
z, 0 1000 2000

Mobilized bearing force [kN]

Depth (m)

-20

3000

_ug © mechanical loading O after heating/cooling

(Knellwolf et al., 2011)

Lippuner&Partner AG, Grabs
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Hypotheses

* Discretization of the pile in a number of segments to consider soil
layers with different properties

« Soil and pile properties (¢, E, a) remain constant with temperature
(can be imposed to vary with depth)

« Soil and pile-soil interaction properties do not change with
temperature

* The relationships between the shaft friction-shaft displacement,
head stress-head displacement and base stress-base
displacement are known (Load-transfer curves)

 Pile radial strains neglected
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Key parameters

The load-transfer curves vary for
different soil types depending on
the values of g, g5, K and K,

According to Frank et al (1991)

EM
K.=c M
s= a7
EM
K. =c,-M
b= 27

c1,C: empirical coefficients

Ey: Menard pressurementer
modulus

D: pile diameter

Thermo-mechanical behaviour of single energy piles

(Laloui and Rotta Loria, 2019;
redrawn after Knellwolf et al., 2011)

Load-transfer relationship for shaft of single isolated pile
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Key param ete rS (Knellwolf et al., 2011)

* For coarse-grained soils (Frank et al 1991)
* 1 = 0.8 and Cyr = 4.8
* For fine-grained soils (Frank et al 1991)

e cg=2andc, =11

* The Menard pressurementer modulus can be related to the soill
Young’s modulus E,,;; through the oedometric modulus as

Esoil(1 _ vsoil) o
(1 + vsoil)(l _ szoil) "

Ey = Egeq®y =

* a, IS a rheological coefficient typically equal to 1/3 for coarse-
grained solls and equal to 1 for fine-grained soils
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Modelled and observed
responses
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Modelling of piles in sand (tests by Briaud et al. (1989))

(Rotta Loria et al., 2020)

L=9.15m
D=0.273m
L/D = 33.52 z=0.00m
| Layer A - Dense sand iz T —
' S
| <
______ A N z=240m O
Ll | = z -
| =
' ()
B E
| o &
| 2 5
T ©c F -
z=1220m B w 8 Q,exp = 414 kN - Mod. | —
Layer B - Medium to stiff silty clay zZ © D =273 mm e E
with-interbeded sand B L/D =335 Xp' .
L =1433m 10 ] | 1 ] L | ] | ]

0 20 40 60 80 100
Normalised vertical load, P/Q, [%]

Layer C - Bedrock
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Modelling of piles in clay (tests by O'Neill et al. (1981))

(Rotta Loria et al., 2020)

L=13.11m
D=0.273m
L/D = 48 z=0.00m
Layer A - Stiff overconsclidated
| clays
| T —
. O § 2 - . —
= .
| —o | | i
________ o z=204m S =
| == 'E' B,, 4 - L | —
s
= > & Ip -
: O c - — Mod.
| Ao 6 o E 7
. = 0O Xp'
| e= I '
Ea
' o2 8 Q,=586kN —
| prd © D =273 mm
_i_ - L/D=48 7
"—'A z=1411m 10 1 | 1 | 1 | 1 ] 1
Layer B - Very stiff sandy clay 0 20 40 60 80 100
and silt

Normalised vertical load, P/Q, [%]
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Modelling of piles in clay (tests by O'Neill et al. (1981))

(Rotta Loria et al., 2020)

0.2

0.4

— Mod.

Normalised depth, z/L [-]

Q, . = 586 kN
0.8 D =273 mm -
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L/D =48 7]

l 1 l !
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Modelling of piles in stratified solil (tests by Mimouni and Laloui (2015))

L=28m
D=090m
| L/D = 31.11
Layer A - Alluvial soil ' S-S
Layer B - Sandy-gravelly |
moraine . z=16.60m
Layer C - Bottom moraine |
. z'=2010m

Layer'D.=Molasse
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Normalised depth, z*/L [-]

0.2

0.4

0.6

0.8

(Rotta Loria et al., 2020)
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Modelling of piles in stratified soil (tests by Rotta Loria and Laloui (2017))

Layer:D.=Molasse

L=28m
D=0.90m
\V4 L/D = 31.11 | z=0.00m
l?.-z_ =090m ] ' |
Z |
z* |
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Layer B - Sandy-gravelly | |
moraine ; z=16.60 m
Layer C - Bottom moraine |
. z=20.10m
2

o
N

o
~

o
o)

0.8

Normalised depth, z*/L [-]

0.2

o o
[e)] RN

Normalised depth, z*/L [-]
o
P

(c)

(Rotta Loria et al., 2020)
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Concluding remarks
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Geotechnical and structural challenges

« Quantify thermally induced stresses due to heating/cooling loads

« Potential tensile stresses experienced due to cooling when
dealing with low mechanical loads

* Define the related displacements in the short- and long-term

« Settlements expected throughout the cooling phase, while
heaves expected throughout the heating phase
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