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Outline

• Thermo-mechanical testing

• Axial capacity and deformation

• Thermo-mechanical schemes

• Thermo-Pile
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Thermo-mechanical testing 

of single energy piles

Sign convention:

• Compressive stresses and contractive strains considered positive

• Downward displacements (i.e., settlements) considered positive
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Observed response of a single energy pile

Full-scale in situ 
testing of a single 
energy pile

Under a 4-storey building 

at EPFL campus (Bâtiment

Polyvalent) 

Founded on 97 piles 

Test pile: 88 cm in 

diameter and 25.8 m in 

length 

Polyethylene U-tube attached 
on the reinforcing cage 

Location 

of the pile
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Features of the test
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Goal of the field test

• Analyse the thermo-mechanical behaviour of a single energy pile 

subjected to heating loads

1. The BP Building

(Laloui et al., 2003)
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End-bearing energy pile

(Laloui et al., 2003)
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Temperature and vertical strain variation – Test 1

(Laloui et al., 2003)
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Vertical strain reversibility – Test 1

(Laloui et al., 2003)
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Vertical head displacement history

(Laloui et al., 2003)
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Vertical head displacement

(Laloui and Rotta Loria 2019)
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Vertical displacement variations

Null point of vertical displacement
It represents the plane where no thermally induced displacement occur in the pile

(Laloui et al., 2003)

τ, w

Shaft
P ΔT > 0

Null point

τ, w
Shaft
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Mobilised shaft resistance (mechanical loading)

(Laloui et al., 2003)

𝜏 =
𝐴 𝐸

𝜋 𝐷

𝑑𝜀

𝑑𝑧
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Observed thermally induced shaft resistance variations

(Laloui and Rotta Loria, 2019)

-9.25 kPa/°C

-2.46 kPa/°C

0.46 kPa/°C

2.10 kPa/°C
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Mobilised shaft resistance (thermo-mechanical loading)

Linear decrease of 2.1 kPa/°C for shaft resistance above null point

𝜏 =
𝐴 𝐸

𝜋 𝐷

𝑑𝜀

𝑑𝑧

(Laloui et al., 2003)
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Vertical stress variation and degree of freedom

150 kPa/°C at the pile head (Laloui et al., 2003)
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Observed thermally induced vertical stress variations

(Laloui and Rotta Loria, 2019)

362 kPa/°C

41 kPa/°C

-16 kPa/°C

-176 kPa/°C

Pile heating

Pile cooling
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Application of principle of superposition

P

PileP ΔT > 0

P

Pile ΔT > 0

P

PileP
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Axial capacity and 

deformation

of single energy piles
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Modelling approaches

1. Numerical methods (FE, DE)

2. Load-transfer methods (t-z)

3. Analytical solutions (closed-form expressions)

Pile

1. . 2. 3.
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The problem

(Laloui and Rotta Loria, 2019)
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General methods of pile installation

• Pile driving: Installation of piles by driving them into the ground (i.e., 

displacement piles)

• During installation, the soil is displaced mainly radially, so

• Non-cohesive (e.g., coarse-grained) soils are compacted

• Cohesive (e.g., fine-grained) soils tend to suffer heave

• Pile boring: Installation of piles by excavating the ground and filling 

with concrete (i.e., non-displacement piles)

• During installation lateral stresses in the ground are reduced, so

• Fine-grained soils tend to suffer swelling and softening, and 

the initial condition are only partly restored upon concreting
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Generalised formulation of bearing capacity

• The net ultimate load capacity, 𝑄𝑢, of a single pile is 

equal to the sum of the shaft capacity, 𝑄𝑠, and base 

capacity, 𝑄𝑏, less than the weight of the pile, 𝑊:

• In the design practice, the shaft and base capacities 

are computed independently from each other, even if 

they are not necessarily mobilised at the same time:

• Pile shaft: 0.5 to 2% of the pile diameter, i.e., 

displacements usually in the range of 5 to 15 mm

• Pile base: 5 to 10% of the pile base diameter

𝑄𝑢 = 𝑄𝑠 + 𝑄𝑏 −𝑊
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Types of piles

• End-bearing piles: piles that penetrate a relatively soft layer of soil 

to found on a firmer stratum and derive most of their capacity from 

the base capacity, 𝑄𝑏

• Floating piles: piles that do not found on a particularly firm stratum 

and derive most of their capacity from the shaft capacity, 𝑄𝑠

• In cohesive soil, the shaft capacity of piles is generally paramount

• In non-cohesive soil the overall capacity is more evenly divided 

between shaft and base
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Methods to estimate the bearing capacity

• Two main different ways to estimate the axial capacity of piles:

• Experimental estimation, e.g., use of load-settlement curves

• Analytical estimation, e.g., use of bearing capacity theory

• The bearing capacity of a pile is considered as: 

• load for which a further increase in settlement does not induce 

an increase in load

• load causing a settlement of 10% of the pile base diameter, 𝐷
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Experimental estimation of bearing capacity

Two typical branches of 

load-settlement curves:

- A first elastic branch 

where the settlements 

are less than 1%D

- A second non-linear 

branch for higher 

settlements governed by 

plastic mechanisms at 

pile-soil interface and 

eventually at pile base

Serviceability state

Ultimate state

(Rotta Loria et al., 2016)
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Analytical estimation of bearing capacity

• The shaft capacity can be estimated by integrating along the pile 

shaft the pile-soil interface shear strength

• The base capacity can be evaluated from bearing capacity theory

𝑄𝑢 = 𝑞𝑠𝐴𝑠 + 𝑞𝑏𝐴𝑏 −𝑊

= ҧ𝑐𝑎 + ത𝜎𝑣 ഥ𝐾 tan 𝛿 𝐴𝑠 + 𝑐𝑁𝑐 + 𝜎𝑣𝑏𝑁𝑞 +
1

2
𝛾𝐷𝑁𝛾 𝐴𝑏 −𝑊

• 𝑞𝑠: average shear strength down the 

pile shaft

• 𝐴𝑠 = 2𝜋𝑅𝐿: external surface of the pile 

shaft (𝑅 = pile radius; 𝐿 = pile length)

• 𝑞𝑏: base resistance

• 𝐴𝑏 = 𝜋𝑅2 pile cross-sectional area

• ҧ𝑐𝑎: average pile-soil interface 

adhesion

• ത𝜎𝑣: some average vertical stress

• ഥ𝐾: some average coefficient of lateral 

pressure

• 𝛿: some angle of pile-soil interface 

shear strength

• 𝑐: soil cohesion

• 𝑁𝑐, 𝑁𝑞 and 𝑁𝛾: bearing capacity 

factors

• 𝜎𝑣𝑏: some vertical stress at pile base

• 𝛾: some unit weight of the soil
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Effective stress analysis

• When drained conditions may be assumed upon loading an 

effective stress analysis approach can be considered

• Assuming equal to zero the cohesive components and neglecting 

the term 
1

2
𝛾′𝐷𝑁𝛾 because small in relation to the term involving 𝑁𝑞, 

the generalised formulation of the ultimate load capacity becomes

𝑄𝑢 = 𝑞𝑠𝐴𝑠 + 𝑞𝑏𝐴𝑏 −𝑊 = 𝜎′𝑣 ഥ𝐾 tan 𝛿 𝐴𝑠 + 𝜎′𝑣𝑏𝑁𝑞𝐴𝑏 −𝑊
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Effective stress analysis - shaft capacity

• The shaft resistance is often expressed as 𝜎′𝑣 ഥ𝐾 tan 𝛿 = 𝜎′𝑣𝛽

• 𝛽 = ഥ𝐾 tan 𝛿 must be defined considering ഥ𝐾 and tan 𝛿

• ഥ𝐾 relates the normal stress acting on the pile-soil interface after pile 

installation, ഥ𝜎′𝑛, to the in situ vertical effective stress, ഥ𝜎′𝑣

• For displacement piles: ഥ𝐾 = 𝐾0 = 1 − sin𝜑𝑐𝑣 , 𝛿 = 𝜑𝑐𝑣
′

• For non-displacement piles: ഥ𝐾 = 0.7𝐾0 = 0.7 1 − sin𝜑𝑐𝑣 , 𝛿 = 𝜑𝑐𝑣
′

• The approach of considering 𝛿′ = 𝜑𝑐𝑣
′ may be justified on the basis 

that no dilation is expected between the soil and the shaft at failure
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Effective stress analysis – base capacity

• Instead of the simple product 𝜎′𝑣𝑏𝑁𝑞 the base resistance is often 

expressed as

• According to Hansen (1970):

• In the previous formula, it is often considered 𝑠𝑞 = 1 and 𝜑∗

represents an appropriate value of angle of shear strength

𝑁𝑞𝑠𝑞𝑑𝑞 = 𝐾𝑝 𝑒
𝜋 tan 𝜑∗

𝑑𝑞 𝑠𝑞
= 𝐾𝑝𝑒

𝜋 tan 𝜑∗
1 + 2 tan𝜑∗ 1 − sin𝜑∗ 2𝑘 1 + 0.1𝐾𝑝

=
1 + sin𝜑∗

1 − sin𝜑∗ 𝑒
𝜋 tan 𝜑∗

1 + 2 tan𝜑∗ 1 − sin𝜑∗ 2 tan−1
𝐿

𝐷
൫

൯

1

+ 0.1𝐾𝑝

𝑞𝑏 = 𝜎′𝑣𝑏𝑁𝑞𝑠𝑞𝑑𝑞
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Analysis of piles in rock

• When dealing with piles founded on rock, only the base capacity 

can be considered to contribute to the total pile capacity, hence

• According to Zhang and Einstein (1998):

• 𝑈𝐶𝑆 = unconfined compressive strength

• 𝑝𝑎 = atmospheric pressure

𝑄𝑏 = 𝑞𝑏𝐴𝑏 = 15 𝑝𝑎
𝑈𝐶𝑆

𝑝𝑎
𝐴𝑏

𝑄𝑢 ≅ 𝑄𝑏
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Thermo-mechanical 

schemes for energy piles

Fundamental hypothesis:

• Thermo-elastic behaviour of the energy pile-soil system
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Mathematical formulation for axial equilibrium

• 𝑃: applied load

• 𝐾ℎ: head stiffness

• 𝑤ℎ: vertical head displacement

• 𝑄𝑠,𝑚𝑜𝑏: mobilised shaft capacity

• 𝑄𝑏,𝑚𝑜𝑏: mobilised base capacity

𝑃 +
𝜋𝐷2

4
𝐾ℎ𝑤 𝑧 = 0 +𝑊 + 𝑄𝑠,𝑚𝑜𝑏 + 𝑄𝑏,𝑚𝑜𝑏 = 0
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Mathematical formulation for axial equilibrium

• Both 𝑄𝑠,𝑚𝑜𝑏 and 𝑄𝑏,𝑚𝑜𝑏 can be written in terms of a mechanical and 

a thermal portion as

• where

𝑄𝑠,𝑚𝑜𝑏 = 𝑄𝑠,𝑚𝑜𝑏
𝑚 + 𝑄𝑠,𝑚𝑜𝑏

𝑡ℎ

𝑄𝑏,𝑚𝑜𝑏 = 𝑄𝑏,𝑚𝑜𝑏
𝑚 + 𝑄𝑏,𝑚𝑜𝑏

𝑡ℎ

𝑄𝑠,𝑚𝑜𝑏
𝑡ℎ = 𝑄𝑠,𝑚𝑜𝑏,𝑢𝑝 + 𝑄𝑠,𝑚𝑜𝑏,𝑑𝑜𝑤𝑛

𝑄𝑠,𝑚𝑜𝑏,𝑢𝑝 = 𝜋𝐷න
0

𝑧𝑁𝑃,𝜏

𝜏 𝑑𝑧

𝑄𝑠,𝑚𝑜𝑏,𝑑𝑜𝑤𝑛 = 𝜋𝐷න
𝑧𝑁𝑃,𝜏

𝐿

𝜏 𝑑𝑧

𝑧𝑁𝑃,𝜏: depth of null 

point of shear stress

(Mimouni and Laloui, 2014)
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Energy pile with no head and base restraint

𝑄𝑠,𝑚𝑜𝑏
𝑡ℎ

= 𝑄𝑠,𝑚𝑜𝑏,𝑢𝑝

+ 𝑄𝑠,𝑚𝑜𝑏,𝑑𝑜𝑤𝑛 = 0

𝑃 + 𝑄𝑠,𝑚𝑜𝑏
𝑚 = 0

𝑃 + 𝑄𝑠,𝑚𝑜𝑏

= 𝑃 + 𝑄𝑠,𝑚𝑜𝑏
𝑚

+ 𝑄𝑠,𝑚𝑜𝑏
𝑡ℎ = 0

(Rotta Loria et al., 2019)
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Energy pile with head or base restraint

𝑄𝑠,𝑚𝑜𝑏
𝑡ℎ + 𝑄𝑏,𝑚𝑜𝑏

𝑡ℎ = 0

𝑃 + 𝑄𝑠,𝑚𝑜𝑏
𝑚 + 𝑄𝑏,𝑚𝑜𝑏

𝑚 = 0

𝑃 + 𝑄𝑠,𝑚𝑜𝑏 + 𝑄𝑏,𝑚𝑜𝑏 = 0

𝑃 + 𝜋
𝐷2

4
𝐾ℎ𝑤

𝑚 𝑧 = 0

+ 𝑄𝑠,𝑚𝑜𝑏
𝑚 = 0

𝜋
𝐷2

4
𝐾ℎ𝑤

𝑡ℎ 𝑧 = 0

+ 𝑄𝑠,𝑚𝑜𝑏
𝑡ℎ = 0

𝑃 + 𝜋
𝐷2

4
𝐾ℎ𝑤 𝑧 = 0

+ 𝑄𝑠,𝑚𝑜𝑏 = 0

(Rotta Loria et al., 2019)
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Energy pile with head and base restraint

𝑃 + 𝜋
𝐷2

4
𝐾ℎ𝑤

𝑚 𝑧 = 0

+ 𝑄𝑠,𝑚𝑜𝑏
𝑚 + 𝑄𝑏,𝑚𝑜𝑏

𝑚 = 0

𝜋
𝐷2

4
𝐾ℎ𝑤

𝑡ℎ 𝑧 = 0

+ 𝑄𝑠,𝑚𝑜𝑏
𝑡ℎ + 𝑄𝑏,𝑚𝑜𝑏

𝑡ℎ = 0

𝑃

+ 𝜋
𝐷2

4
𝐾ℎ 𝑤ℎ,𝑚 + 𝑤ℎ,𝑡ℎ

+ 𝑄𝑠,𝑚𝑜𝑏 + 𝑄𝑏,𝑚𝑜𝑏 = 0

(Rotta Loria et al., 2019)
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• If a pile can deform freely, a temperature change results in a 

thermal deformation proportional to the coefficient of thermal 

expansion, 𝛼, and the temperature change 𝛥𝑇:

Thermally induced strain

𝜀𝑓
𝑡ℎ = −𝛼𝐸𝑃Δ𝑇

(Laloui et al., 2003;

Rotta Loria, 2018)
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• This thermally induced strain leads to a change in length of

Variation of body dimension

𝛥𝐿 = 𝐿′ − 𝐿 = −𝐿𝜀𝑓
𝑡ℎ = 𝐿𝛼𝐸𝑃𝛥𝑇

(Laloui et al., 2003;

Rotta Loria, 2018)
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• When the thermally induced deformation is completely blocked

• Therefore, a thermally induced stress arises

Thermally induced stress

𝜀𝑏
𝑡ℎ = −𝜀𝑓

𝑡ℎ = 𝛼𝐸𝑃Δ𝑇

𝜎𝑏
𝑡ℎ = 𝐸𝐸𝑃𝜀𝑏

𝑡ℎ = 𝐸𝐸𝑃𝛼𝐸𝑃Δ𝑇

(Laloui et al., 2003;

Rotta Loria, 2018)
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• Energy piles will generally be subjected to an observed thermal 

strain when subjected to temperature changes of

• Hence, a portion of strain will be blocked

and pile behaviour will be characterised by a degree of freedom:

• The blocked thermal strain will induce a thermal stress in the pile:

Summary

𝜀𝑜
𝑡ℎ ≤ 𝜀𝑓

𝑡ℎ

𝐷𝑂𝐹 =
𝜀𝑜
𝑡ℎ

𝜀𝑓
𝑡ℎ with 0 ≤ 𝐷𝑂𝐹 ≤ 1

𝜀𝑏
𝑡ℎ = 𝜀𝑜

𝑡ℎ − 𝜀𝑓
𝑡ℎ

𝜎𝑜
𝑡ℎ = 𝐸𝐸𝑃𝜀𝑏

𝑡ℎ = 𝐸𝐸𝑃 𝜀𝑜
𝑡ℎ − 𝜀𝑓

𝑡ℎ = 𝐸𝐸𝑃 𝜀𝑜
𝑡ℎ + 𝛼𝐸𝑃𝛥𝑇

= 𝐸𝐸𝑃𝛼𝐸𝑃𝛥𝑇(1 − 𝐷𝑂𝐹) (Laloui et al., 2003)
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Summary

(Rotta Loria, 2018)
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Thermo-Pile

Fundamental hypothesis:

• Thermo-elastic behaviour of the energy pile-soil system



Lyesse LalouiThermo-mechanical behaviour of single energy piles 43

Load-transfer analysis approach

• Pile-soil interaction modelled 

through a load-transfer approach

t-z

• The pile displacement 

calculation is based on a one 

dimensional finite difference 

scheme

• Standard calculation of pile 

bearing capacity

(Laloui and Rotta Loria, 2019;

redrawn after Knellwolf et al., 2011)
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Load-transfer analysis approach

• First introduced by Coyle and 

Reese (1966)

• Pile discretised into 𝑘 elements 

of length ℎ𝑖

• Springs between two adjacent 

elements represent pile rigidity

• Interaction between soil and 

pile along the lateral surface 

and at tip is described by load 

transfer curves

(Laloui and Rotta Loria, 2019;

redrawn after Knellwolf et al., 2011)
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Background

• Finite difference scheme for 

settlement evaluation based on 

the work of Coyle and Reese 

(1963)

• Shaft and base resistance load-

transfer (t-z) diagrams based 

on those proposed by Frank 

and Zhao (1982)

(Laloui and Rotta Loria, 2019;

redrawn after Knellwolf et al., 2011)
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Extension

• Head stiffness of the building • Shaft resistance t-z diagram 

extended to consider thermlly 

induced displacements

(Knellwolf et al., 2011)
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Thermo-Pile

A suitable tool to perform

the geotechnical and structural design of energy piles

(Knellwolf et al., 2011)
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Hypotheses

• Discretization of the pile in a number of segments to consider soil 

layers with different properties

• Soil and pile properties (𝜑, 𝐸, 𝛼) remain constant with temperature

(can be imposed to vary with depth)

• Soil and pile-soil interaction properties do not change with 

temperature

• The relationships between the shaft friction-shaft displacement,  

head stress-head displacement and base stress-base 

displacement are known (Load-transfer curves)

• Pile radial strains neglected
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Key parameters

• The load-transfer curves vary for 

different soil types depending on 

the values of 𝑞𝑠, 𝑞𝑏, 𝐾𝑠 and 𝐾𝑏

• According to Frank et al (1991)

• 𝑐1, 𝑐2: empirical coefficients

• 𝐸𝑀: Menard pressurementer

modulus

• 𝐷: pile diameter

(Laloui and Rotta Loria, 2019;

redrawn after Knellwolf et al., 2011)

𝐾𝑠 = 𝑐1
𝐸𝑀
𝐷

𝐾𝑏 = 𝑐2
𝐸𝑀
𝐷
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Key parameters

• For coarse-grained soils (Frank et al 1991)

• 𝑐1 = 0.8 and 𝑐2 = 4.8

• For fine-grained soils (Frank et al 1991)

• 𝑐1 = 2 and 𝑐2 = 11

• The Menard pressurementer modulus can be related to the soil 

Young’s modulus 𝐸𝑠𝑜𝑖𝑙 through the oedometric modulus as

• 𝛼𝑟 is a rheological coefficient typically equal to 1/3 for coarse-

grained soils and equal to 1 for fine-grained soils

(Knellwolf et al., 2011)

𝐸𝑀 = 𝐸𝑜𝑒𝑑𝛼𝑟 =
𝐸𝑠𝑜𝑖𝑙 1 − 𝑣𝑠𝑜𝑖𝑙

1 + 𝑣𝑠𝑜𝑖𝑙 1 − 2𝑣𝑠𝑜𝑖𝑙
𝛼𝑟
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Modelled and observed 

responses
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Modelling of piles in sand (tests by Briaud et al. (1989))

(Rotta Loria et al., 2020)
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Modelling of piles in clay (tests by O'Neill et al. (1981))

(Rotta Loria et al., 2020)
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Modelling of piles in clay (tests by O'Neill et al. (1981))

(Rotta Loria et al., 2020)
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Modelling of piles in stratified soil (tests by Mimouni and Laloui (2015))

(Rotta Loria et al., 2020)
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Modelling of piles in stratified soil (tests by Rotta Loria and Laloui (2017))

(Rotta Loria et al., 2020)
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Concluding remarks
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Geotechnical and structural challenges

• Quantify thermally induced stresses due to heating/cooling loads

• Potential tensile stresses experienced due to cooling when 

dealing with low mechanical loads

• Define the related displacements in the short- and long-term

• Settlements expected throughout the cooling phase, while 

heaves expected throughout the heating phase


